[해결책] 수치해석 3판(Numerical Methods 3rd Edition, Faires & Burden)
페이지 정보
작성일 20-04-02 02:18
본문
Download : [솔루션] 수치해석 3판(Numeri.zip
.^^ 참고!
순서
634 CHAPTER 1 Answers for Numerical Methods
c.
sign, the Intermediate Value Theorem implies a number c exists with f(c) = 0.
4!
−199
0
0 P2(x) dx| ≤
−2eξ(sin ξ + cos ξ)
설명
b. |f(x) − P2(x)| ≤ 1.252
13. A bound for the maximum error is 0.0026.
1
a. P2(0.5) = 1.5 and f(0.5) = 1.446889. An error bound is 0.093222 and |f(0.5)−
3. For each part, f ∈ C[a, b], f exists on (a, b), and f(a) = f(b) = 0. Rolle’s Theorem
P2(x) = 1+x and R2(x) =
![[솔루션] 수치해석 3판(Numeri-5508_01_.gif](http://www.happyreport.co.kr/prev/201112/%5B%EC%86%94%EB%A3%A8%EC%85%98%5D%20%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%203%ED%8C%90(Numeri-5508_01_.gif)
![[솔루션] 수치해석 3판(Numeri-5508_02_.gif](http://www.happyreport.co.kr/prev/201112/%5B%EC%86%94%EB%A3%A8%EC%85%98%5D%20%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%203%ED%8C%90(Numeri-5508_02_.gif)
![[솔루션] 수치해석 3판(Numeri-5508_03_.gif](http://www.happyreport.co.kr/prev/201112/%5B%EC%86%94%EB%A3%A8%EC%85%98%5D%20%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%203%ED%8C%90(Numeri-5508_03_.gif)
![[솔루션] 수치해석 3판(Numeri-5508_04_.gif](http://www.happyreport.co.kr/prev/201112/%5B%EC%86%94%EB%A3%A8%EC%85%98%5D%20%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%203%ED%8C%90(Numeri-5508_04_.gif)
![[솔루션] 수치해석 3판(Numeri-5508_05_.gif](http://www.happyreport.co.kr/prev/201112/%5B%EC%86%94%EB%A3%A8%EC%85%98%5D%20%EC%88%98%EC%B9%98%ED%95%B4%EC%84%9D%203%ED%8C%90(Numeri-5508_05_.gif)
d. R2(0.5) = −0.125; actual error = −0.125
6 x3
ANSWERS FOR NUMERICAL METHODS
3x + 1
0 f(x) dx−
6x2 + 23
0 f(x) dx ≈ 1.5
11. a. P3(x) = 1
|f(4)(ξ)|
3888ex/2 cos x
5. a. P2(x) = 0
3
레포트 > 공학,기술계열
1.2 Answers for Numerical Methods 633
7. Since
and
for some number ξ between x and 0, we have the following:
f(4)(x) =
61
3 ,
Download : [솔루션] 수치해석 3판(Numeri.zip( 32 )
1
다. June 29, 2002 1:10 P.M.
1. For each part, f ∈ C[a, b] on the given interval. Since f(a) and f(b) are of opposite
implies that a number c exists in (a, b) with f(c) = 0. For part (d), we can use
Exercise Set 1.2 (Page 000)
24
so
[해결책] 수치해석 3판(Numerical Methods 3rd Edition, Faires & Burden)
c. P2(x) = 1+3(x − 1) + 3(x − 1)2
1
기계, 공학, 전산, 연습문제, 솔루션, Numerical
|f(x) − P3(x)| ≤
|f(4)(x)| ≤ |f(4)(0.60473891)| ≤ 0.09787176 for 0 ≤ x ≤ 1,
|x|4 ≤ 0.09787176
1
b. We have
(1)4 = 0.004077990.
[a, b] = [−1, 0] or [a, b] = [0, 2].
2592 ex/2 sin x
+
d. |
b. R2(0.5) = 0.125; actual error = 0.125
P2(0.5)| ≤ 0.0532
9. The error is approximately 8.86 × 10−7.
|R2(x)| dx ≤ 0.313, and the actual error is 0.122.
648x3
아래는 일부의 발췌 부분입니다.