유체역학 6판 조광래 외2명 해법(1-3)
페이지 정보
작성일 20-11-10 05:57본문
Download : 유체역학및실습.zip
dt dt
M ∫ r V
dt
⎝ ⎠
레포트 > 교육계열





m d m d d
use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form
mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner?
system
mechanics. They are valid and equivalent for constant-mass systems, and we can make
rO is a better notation.
Solution: These questions are just to get the students thinking about the basic laws of
Σ = ⎢ × ⎥
d d
Download : 유체역학및실습.zip( 19 )
⎛ ⎞
momentum versus linear momentum. One might forget that r is the position vector from
What does r mean in this relation? Is this relation valid in both solid and fluid
Σ = Σ = Σ = ⎜ ⎟
ρ υ
유체역학 6판 조광래 외2명 해법(1-3)
system
유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)유체역학 6판 조광래 외2명 솔루션(1-3)
3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms:
popular in this chapter.
설명
for a Control Volume
3.2 Consider the angular-momentum relation in the form
( )
⎢⎣ ⎥⎦
ρ υ
⎡ ⎤
the moment-center O to the elements ρ dυ where momentum is being summed. Perhaps
F a F V F ∫ V
순서
유체역학 6판 조광래 외2명 솔루션(1-3)
⎜ ⎟
Chapter 3 • Integral Relations
유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)유체역학 6판 조광래 외2명 해법(1-3)
Solution: These questions are just to get the students thinking about angular
O ( )
for rocket propulsion, but the #3 form is control-volume related and thus the most
다.